FA is characterized into two types:

1. Deterministic Finite Automata (DFA):

DFA consists of 5 tuples $\{Q, \Sigma, q, F, \delta\}$.

Q: a set of all states.

 Σ : a set of input symbols. (Symbols that which machine takes as input)

q: Initial state. (Starting state of a machine)

F: the set of the final state.

δ: Transition Function, defined as δ: Q X $\Sigma \rightarrow Q$.

In a DFA, for a particular input character, the machine goes to one state only. A transition function is defined on every state for every input symbol. Also in DFA null (or ε or λ) move is not allowed.

For <u>*example*</u>, below DFA with $\Sigma = \{0, 1\}$ accepts all strings ending with 0.

Figure: DFA with $\Sigma = \{0, 1\}$

- 2. Nondeterministic Finite Automata(NFA): NFA is similar to DFA except following additional features:
 - Null (or ε or λ) move is allowed i.e., it can move forward without reading symbols.
 - Ability to transmit to any number of states for a particular input.

Figure: NFA with $\Sigma = \{0, 1\}$

<u>Example</u> /

L= $\{1x | x \in \{0,1\}^*\}$ in DFA, NFA machines.

<u>Answer</u> /

DFA:

NFA:

✤ A nondeterministic finite automata (NFA) allows transitions on a symbol from one state to possibly more than one other state.

 Allow ε-transitions from one state to another whereby we can move from the first state to the second without inputting the next character.

In an NFA a state may have zero, one, or more exiting arrows for each symbol of alphabet.

$$\sum = \{a,b,c\}$$

