FA is characterized into two types:

1. Deterministic Finite Automata (DFA):

DFA consists of 5 tuples $\{\mathrm{Q}, \Sigma, \mathrm{q}, \mathrm{F}, \delta\}$.
Q: a set of all states.
Σ : a set of input symbols. (Symbols that which machine takes as input)
q : Initial state. (Starting state of a machine)
F: the set of the final state.
δ : Transition Function, defined as $\delta: \mathrm{Q} \mathrm{X} \Sigma$--> Q .
In a DFA, for a particular input character, the machine goes to one state only. A transition function is defined on every state for every input symbol. Also in DFA null (or ε or λ) move is not allowed.

For example, below DFA with $\Sigma=\{0,1\}$ accepts all strings ending with 0 .

Figure: DFA with $\Sigma=\{0,1\}$
2. Nondeterministic Finite Automata(NFA): NFA is similar to DFA except following additional features:

- Null (or ε or λ) move is allowed i.e., it can move forward without reading symbols.
- Ability to transmit to any number of states for a particular input.

Figure: NFA with $\Sigma=\{0,1\}$

Example /

$L=\left\{1 x \mid x \in\{0,1\}^{*}\right\}$ in DFA, NFA machines.
Answer /

DFA:

NFA:

* A nondeterministic finite automata (NFA) allows transitions on a symbol from one state to possibly more than one other state.

Allow ε-transitions from one state to another whereby we can move from the first state to the second without inputting the next character.

* In an NFA a state may have zero, one, or more exiting arrows for each symbol of alphabet.

$$
\sum=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}
$$

